
Tight lower bounds for 2-query LCCs over finite fields

Arnab Bhattacharyya
Dept. of Computer Science

Princeton University
Princeton, NJ

Email: arnabb@princeton.edu

Zeev Dvir
Dept. of Computer Science

Princeton University
Princeton, NJ

Email: zdvir@princeton.edu

Shubhangi Saraf
School of Mathematics

Institute for Advanced Study
Princeton, NJ

Email: shubhangi@ias.edu

Amir Shpilka
Faculty of Computer Science

Technion — Israel Institute of Technology
Haifa, Israel

Email: shpilka@cs.technion.ac.il

Abstract— A Locally Correctable Code (LCC) is an error
correcting code that has a probabilistic self-correcting algorithm
that, with high probability, can correct any coordinate of the
codeword by looking at only a few other coordinates, even if a
fraction δ of the coordinates are corrupted. LCCs are a stronger
form of LDCs (Locally Decodable Codes) which have received
a lot of attention recently due to their many applications and
surprising constructions.

In this work we show a separation between 2-query LDCs and
LCCs over finite fields of prime order. Specifically, we prove a
lower bound of the form pΩ(δd) on the length of linear 2-query
LCCs over Fp, that encode messages of length d. Our bound
improves over the known bound of 2Ω(δd) [9], [12], [8] which
is tight for LDCs. Our proof makes use of tools from additive
combinatorics which have played an important role in several recent
results in theoretical computer science.

Corollaries of our main theorem are new incidence geometry
results over finite fields. The first is an improvement to the
Sylvester-Gallai theorem over finite fields [14] and the second is a
new analog of Beck’s theorem over finite fields.

Keywords-locally decodable codes; sylvester-gallai theorem; ad-
ditive combinatorics

1. INTRODUCTION

Locally Correctable Codes (LCCs) are special families of
error correcting codes (ECCs) which possess an additional
structure. Besides being able to recover a message from
its noisy transmission (the original purpose of ECCs, as
defined by Shannon [15]), these codes enable the receiver to
recover any single coordinate of the codeword from a ‘local’
sample of the other, possibly corrupted, coordinates. The
local correction is guaranteed to work with high probability
as long as the number of errors is not too large. Roughly
speaking, a linear q-query locally correctable code ((q, δ)-
LCC for short) over a field Fp is a subspace C ⊆ Fnp such
that, given an element ỹ that disagrees with some y ∈ C
in at most δn coordinates and an index i ∈ [n], one can
recover yi with, say, probability 0.9, by reading at most q
coordinates of ỹ. In this setting, the ‘message length’ is the
dimension of C, or d = logp(|C|).

The notion of LCCs was preceded in the literature by
the weaker notion of Locally Decodable Codes (LDCs) in
which one has the seemingly weaker property that message
symbols (as opposed to codeword symbols) are to be ‘locally
decoded’. In fact, for linear codes, which are our main
interest, LCCs are a subfamily of LDCs (since every linear
code can be assumed to be systematic and therefore local
correction implies local decoding). Both LDCs and LCCs
have many applications in theoretical computer science. See
[16] for a survey of these codes and their uses.

The main question with respect to LCCs (or LDCs) is how
good can they be. That is, what limitations can we prove on
their encoding length, as a function of the message length,
the number of queries and the amount of error the decoder
can tolerate. Our knowledge in this area is very limited, and
considerable gaps between lower and upper bounds exist
when the number of queries is larger than two.

In this work we focus on the simplest question of this
form. Assuming that the message length is d and the
underlying field is Fp, “What is the minimal encoding
length n for which we can recover any symbol of any
codeword by making just 2 queries, assuming that less than
δn coordinates were corrupted?”

One motivation for studying this question comes from
the desire to better understand the relation between LDCs
and LCCs and explain the lack of constructions for LCCs.
Although it may seem surprising, the question of proving
a lower bound for LCCs with 2 queries is a fundamental
problem that lies in the core of many questions in geometry,
additive combinatorics and more. As we shall see, similar to
some of the connections made in [3], the question that we
study here is closely related to questions such as: general-
izations of the famous Sylvester-Gallai theorem; extensions
of Beck’s theorem; proving lower bounds on the rank of
matrices that satisfy certain ‘design’ like properties. Our
techniques also highlight a close connection of LCCs to
problems in additive combinatorics. We later expand on each

of the problems and state our contributions.
Our main theorem is a tight lower bound for linear LCCs

over Fp, improving the exponential lower bound, that was
proved in [9], [12], [8] for LDCs, n > 2Ω(δd), where d is
the message length, to n > pΩ(δd) for all constants p and δ.
A formal statement is given in the section below.

1.1. The Main Theorem

Denote by Fp the field of residues modulo a prime number
p. When working with 2-query linear LCCs, it will be
convenient to adopt a ‘geometrical’ way of looking at those
codes and speak of their dimension instead of message
length. Note that, for such codes, it is well known that
the decoding can be made linear as well without loss of
generality while only losing a constant factor (depending on
the number of queries) in the error (see [3]).

Definition 1.1 (Linear 2-query LCC). Let V =
(v1, . . . , vn) ∈ (Fdp)n be a list of n vectors (possibly with
repetitions) in Fnp . We say that V is a (2, δ)-LCC (Locally
Correctable Code) if for every i ∈ [n] and every subset
S ⊆ [n] of size at most δn, there exist a pair of indices
j, j′ ∈ [n] \ S such that vi ∈ span{vj , vj′}. We let dim(V),
the dimension of V , denote the dimension of the span of the
vectors v1, . . . , vn inside Fdp.

To see the connection to the (sketchy) definition given in
the previous section, we note that C is the subspace that is
spanned by the rows of the d× n matrix G whose columns
are (v1, . . . , vn). One can think of encoding a message of
length d, ā = (a1, . . . , ad), as Enc(ā) = ā · G. We also
note that in several previous works (e.g. in [7]), LCCs are
defined by means of their dual matrix but, for our purposes,
this (equivalent) definition, in terms of the generating matrix,
will be more convenient.

Theorem 1 (Main Theorem). There exist universal constants
c1, c2 > 0 such that for every ε > 0 and every prime p, the
following holds. Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-
LCC. Then

dim(V) ≤ c1(p/εδ)c2 + ((2 + ε)/δ) · logp(n).

In particular, if we wish to linearly encode a message
of length d using a 2-query LCC, then we must have n =

Ωp,δ,ε

(
p

δ
2+εd

)
.

1.2. Previous work

As mentioned above, each LCC is also an LDC, so lower
bounds for LDCs give lower bounds for LCCs. Exponential
lower bounds (i.e., n ≥ exp(d)) for LDC’s were proven for
two-query codes (also for non-linear codes) in [9], [12], [8].
These bounds are tight since the Hadamard code achieves
n = 2d and is locally decodable for constant δ. We remind
the reader that the Hadamard code is a linear code over F2

which takes a message x ∈ Fd2 and encodes it as a codeword
of length 2d given by

H(x) = (〈a, x〉)a∈Fd2 .

This gives a linear 2-query LDC with constant δ since, to
recover xi, we can query 〈a, x〉 and 〈a+ ei, x〉 for random
a ∈ Fd2 (where ei denote the i’th unit vector in the standard
basis). This is also a linear LCC over F2 since any coordinate
〈a, x〉 can also be recovered from two random positions in
a similar way.

When trying to generalize the Hadamard code construc-
tion to fields Fp with p > 2 a prime number, we are
faced with the following situation. To get a LDC, we can
use the exact same construction described above, where we
replace Fn2 with the set {0, 1}n ⊂ Fnp . One can check that
decoding xi ∈ Fp is still possible using two random queries
as above. If we are interested in LCCs, however, things are
much worse. The best construction we can get is essentially
C = Fnp . That is, we encode a message using all vectors
in Fnp . The dependence on the field size is more dramatic
if we consider LCCs over fields over characteristic zero. In
[3], Barak et al. proved that the message length cannot be
larger than O(1/δ9). In particular, larger messages cannot
be encoded by LCCs. This shows a considerable difference
between LDCs and LCCs over characteristic zero fields.
However, prior to this work, no separation of LCCs and
LDCs, over small finite fields, was known. Theorem 1 gives
a tight lower bound for linear LCCs with 2 queries over
Fp, thus providing a separation between 2-query LCCs and
LDCs, over finite fields (other than F2).

1.3. Incidence Geometry over Finite Fields

One natural way of viewing linear LCCs is as point
configurations with certain algebraic restrictions. This is the
point of view we chose to adapt in Definition 1.1, where
the code was presented in the form of a list of vectors
(v1, . . . , vn) ∈ (Fdp)n satisfying certain conditions on the
spans of pairs of vectors. In [3] it was shown that bounds on
2-query LCCs are actually generalizations of the well-known
Sylvester-Gallai Theorem from combinatorial geometry. Per-
haps surprisingly, this theorem and its generalizations for
finite fields, have recently found applications in algorithms
for polynomial identity testing of depth-3 arithmetic circuits
[11], [14]. The simplest form of this theorem is as follows.

Theorem 1.2 (Sylvester-Gallai theorem). If n distinct points
in Rd are not collinear, then there exists a line that passes
through exactly two of them.

For a full discussion on the connection between LCCs
and this theorem, we refer the reader to [3]. Informally,
the conditions of the form vi ∈ span{vj , vj′}, given in
Definition 1.1, correspond to the three points vi, vj , vj′ ∈ Fdp
being collinear (one has to move to projective space to
see this). Thus, a 2-query linear LCC is a configuration

of points with ‘many’ collinear triples, satisfying some
combinatorial condition depending on the parameter δ. The
Sylvester-Gallai theorem can be stated as saying that, if in
a configuration of points, every pair of points defines a line
which contains a third point, then the points span a subspace
of dimension 1. Stated this way, the connection to our main
theorem is clear. Both results translate information about
‘dependent’ triples into global bounds on the dimension of
the entire set. We now give a Corollary of our main theorem,
stated in the setting of the SG theorem.

Corollary 1.3 (Sylvester-Gallai for Finite Fields). Let V =
{v1, . . . , vn} ⊆ Fdp be a set of n vectors, no two of which are
linearly dependent. Suppose that for every i, j ∈ [n], there
exists k ∈ [n] such that vi, vj , vk are linearly dependent.
Then, for every ε > 0,

dim(V) ≤ poly(p/ε) + (4 + ε) logp n.

Previously, the best upper bound on dim(V) was
18 log2 n = (18 log2 p)·logp n, due to Saxena and Seshadhri
[14]. Note that the set of points V = Fdp shows that
dim(V) ≥ logp n is possible in Corollary 1.3.

Another corollary of our main theorem is a finite field
analog of Beck’s Theorem [5]. Over the reals, Beck’s Theo-
rem states that there exist positive integers α, β such that for
any n points lying in the real plane, if there are at most αn2

lines incident to at least two points, then at least βn points
are collinear (i.e. belong to an affine subspace of dimension
1). Our analog below shows that, over finite fields, one can
find (under the same assumption) a large subset that lies on
a ‘low dimension’ subspace (instead of on a line).

Corollary 1.4 (Analog of Beck’s Theorem for Finite Fields).
Let V = {v1, . . . , vn} be a set of n vectors in Fdp, no two of
which are linearly dependent. If the number of lines incident
to at least two points of V is at most αn2 for α < 1/64,
then there exists V ′ ⊆ V such that |V ′| ≥ |V |/2 and for
every ε > 0,

dim(V ′) ≤ poly(p/εδ) + ((2 + ε)/δ) · logp n

where δ = 1− 8
√
α.

As before, it is not hard to see that dim(V ′) ≥ logp n is
possible in Corollary 1.4.

Both corollaries 1.3 and 1.4 require less machinery than
the proof of our main result, Theorem 1, and can be obtained
in a more direct fashion by applying the same tools from
additive combinatorics used in the proof of Theorem 1. The
reason is that in Theorem 1, the points v1, . . . , vn are not
assumed to be distinct whereas in the corollaries of this
section, they are. The non-distinctness makes the argument
for Theorem 1 much more elaborate, as we describe later.
The proofs of both corollaries are omitted due to the page
limit and can be found in the full version of the paper [6].

1.4. A Rank Bound for Design Matrices over Finite Fields

The connection between combinatorial properties of ma-
trices, such as the zero/nonzero pattern of the matrix entries,
and their algebraic properties, such as their rank, is a very
interesting and important topic in the context of theoretical
computer science. For instance, one can hope that such un-
derstanding could lead to explicit constructions of rigid ma-
trices [3], [7]. An example of the usefulness of such bounds
is demonstrated by the work of Alon [1], that proved lower
bound on the ranks of perturbed identity matrices. That is,
matrices in which all diagonal entries are significantly larger
in magnitude than all other entries. Alon showed how to use
this rank bound to obtain interesting results in geometry,
coding theory and more. In a similar fashion, the recent
work [3], that gave a lower bound on the rank of design
matrices over the real numbers, had interesting applications
in geometry (and of course was used to obtain lower bounds
on LCCs over the reals). Roughly speaking, design matrices
have restrictions on the number of nonzero entries per row,
on the number of nonzero entries per column and on the
size of pairwise intersections of sets of nonzero entries of
columns. The connection between design matrices and LCCs
was first observed in [4]. Specifically, [4] showed that lower
bounds on LCCs are tightly connected to the problem of
determining the minimum rank certain design matrices.

To explain the connection we start with a formal definition
of this family of matrices.

Definition 1.5 (Design matrix). Let A be an m× n matrix
over some field. For i ∈ [m] let Ri ⊂ [n] denote the set of
indices of all non-zero entries in the i’th row of A. Similarly,
let Cj ⊂ [m], j ∈ [n], denote the set of non-zero indices in
the j’th column. We say that A is a (q, k, t)-design matrix
if

1) For all i ∈ [m], |Ri| ≤ q.
2) For all j ∈ [n], |Cj | ≥ k.
3) For all j1 6= j2 ∈ [n], |Cj1 ∩ Cj2 | ≤ t.

The following simple claim shows the connection between
these matrices and LCCs. The claim holds for all values of
q but we state it for q = 3 since we only defined 2-query
LCCs. We omit the (simple) proof and refer the reader to
either [4] or [3] for more details.

Claim 1.6. Let A be a (3, k, t)-design matrix with m rows
and n columns over a field F. Suppose rank(A) ≤ n − d.
Then there exists a linear (2, δ)-LCC V = (v1, . . . , vn) ∈ Fd
with dimension d, where δ = k

2nt .

Hence, we can use Theorem 1 to obtain the following
corollary.

Corollary 1.7 (Rank bound for design matrices). Let α > 0
and let A be a (3, αn, t)-design matrix with m rows and n

columns over a field Fp, p prime. Then, for every ε > 0,

rank(A) > n− poly
(
pt

αε

)
− (4 + ε)t

α
logp(n).

It is an interesting open problem to generalize this bound
to matrices with q > 3. This will not immediately imply a
bound on LCCs with more than 2-queries, but will be, in
our opinion, a big step towards this goal.

1.5. Organization

In Section 2 we give a high level view of the proof and the
techniques used. Section 3 contains some notations and basic
facts from additive combinatorics. In Section 4 we give the
proof of our main result, Theorem 1 based on four auxiliary
lemmas. Three of these lemmas are proven in Sections 5-7.
The proof of the fourth lemma, Lemma 4.3, is omitted due
to the page limit and can be found in the full version of the
paper [6].

2. OVERVIEW OF THE PROOF

To describe the basic idea behind our proof, we first
explain how to obtain a lower bound in the case that the
LCC does not have repeated coordinates. Namely, that any
two coordinates correspond to linearly independent vectors
in Fdp. Although this may seem a bit odd, many of the
technical difficulties in proving Theorem 1 stem from such
possible repetitions. As we shall soon see, the proof for the
case of no repetitions uses a theorem of Ruzsa from additive
combinatorics concerning “approximate vector spaces”. The
general case follows by proving a distributional version of
this theorem and involves a careful combinatorial analysis.

The difficulty in handling repeated coordinates was al-
ready noticed in [3], where analogous results were proven
over the reals. The way we handle repetitions is similar in
spirit to the methods of [3] but requires several new ideas.
In particular, we make heavy use of the fact that the field is
‘not too large’ which enables us to assume that the decoding
is always in the form of summing two coordinates (without
multiplying by field elements first). We note that even for
the case of no multiplicities, the two proofs are completely
different and rely on totally different tools (ours uses additive
combinatorics and [3] uses tools from real analysis). Indeed,
an inherent difference between the two problems is that
[3] proved that the dimension of 2-query LCCs over the
reals is at most some constant whereas over finite fields the
dimension can be as large as logp n (which is, by our results,
close to being best possible).

2.1. LCCs with no repetitions

Let us assume then that we have a (2, δ)-LCC V =
(v1, . . . , vn) so that no vi and vj are scalar multiples of
each other for i 6= j ∈ [n]. We can thus treat V as a set
of vectors (rather than a list). The proof has two conceptual

steps. In the first step, we prove the existence of a not too
small subset V ′ ⊆ V that has low dimension. In the second
step, we (iteratively) “amplify” V ′ until we obtain that V
has low dimension.

Obtaining a (not too small) subset of low dimension:
Consider the following graph on the vertex set V . We con-
nect vi ∼ vj if there is some k such that vk ∈ span(vi, vj).
It is not hard to see that, by the LCC property, for every
vk ∈ V , there exists a matching Mk containing δn/2
edges, such that for every (i, j) ∈ Mk, it holds that
vk ∈ span(vi, vj). Assume for simplicity that it is always
the case that vk + vi + vj = 0 (we can reduce to this case
by replacing each coordinate with its p − 1 nonzero scalar
multiples, we later expand on this point when discussing
LCCs in normal form). Consider the union of all edges
from all those matchings. Clearly we have Ω(n2) edges.
Label an edge (i, j) by vk if (i, j) ∈ Mk. Notice that we
have defined a dense graph on the vertex set V such that
if vi ∼ vj then vi + vj ∈ −V . Intuitively, this means that
the set V is “almost” a subspace. At this point, we invoke
a result of Balog, Szemerédi and Gowers [2], [10] which
shows that there is a not too small subset Ṽ ⊆ V such
that the size of Ṽ + Ṽ = {vi + vj : vi, vj ∈ Ṽ } is linear
in |Ṽ |, and then a result of Ruzsa [13] which implies that
for such sets Ṽ , there is a not too small subset V ′ ⊆ Ṽ
satisfying dim(span(V ′)) ≤ Oδ,p(1) + logp(n). Thus, in
any “approximate” vector space V , a constant fraction of
V spans a vector space that has almost the same size as V .

Amplification – Obtaining a (relatively large) subset
of low dimension: Now we have a subset V ′ ⊂ V such
that |V ′|/|V | = poly(δ, p) and dim(span(V ′)) ≤ Oδ(1) +
logp(n). We would like to use induction on V \ V ′ and
conclude that the dimension of V is small. However, it may
be the case that |V |/|V ′| > p. In this case, the simplest
argument will just give dim(V) < pdim(V ′) = O(1) +
p logp(n) which is too high (we would like the coefficient
in front of the logp(n) to only depend on δ). For that reason,
we first show that we can amplify the size of V ′ to roughly
δ|V | while increasing its dimension by only Oδ,p(1). The
idea is that if we consider all edges labeled by elements
of V ′, then, since there are at least δ

2 |V
′|n such edges, if

|V ′| < δn/2 then the induced graph on V ′ can only contain
|V ′|2/2 < δ|V ′|n/4 of them. Therefore, some vertex v ∈
V \ V ′ is adjacent to Ω(n) such edges. In particular, if we
consider V ′′ = V ′∪{v} and take its span, then the dimension
can grow by only 1, but now, all vertices connected to v by
edges whose labels come from V ′, also belong to V ′′. Thus,
|V ′′| ≥ |V ′|+ Ω(n). This process can continue for Oδ,p(1)
steps and at the end we must have a set Ṽ of size at least
δn/2 and dimension Oδ,p(1) + logp(n).

Completing the argument: At this point we can con-
sider V \ Ṽ and use induction. Note that in order to use
induction we must show that V \ Ṽ is also a (2, δ′)-LCC,
where δ′ ≈ δ. Indeed, if this is not the case then it is not hard

to show that we can further increase Ṽ by Ωδ(n) vertices
and only increase its dimension by 1.

Concluding, since |Ṽ | ≥ δn, we can repeat the induction
at most 1/δ times and get that V is the union of at most
1/δ sets each of dimension at most Oδ,p(1) + logp(n). This
clearly implies the result.

LCC in Normal Form: Recall that in the first step of
the argument we said that without loss of generality, we
assume that whenever vi and vj are used to recover vk then
vk+vi+vj = 0. This is generally not the case, so what we do
is, given the LCC V , we create a new LCC V ′ that contains
all nonzero multiples (in Fp) of every v ∈ V . In this way,
whenever vi and vj span vk, we can pick the appropriate
multiples avi and bvj and get that their sum equals −vk.
This process, however, blows up the size of V by a factor
of p, which is not too bad, but it also reduces δ to δ/p, which
is a greater loss than we can afford. We therefore show in
the amplification step that we can project the set that we
found (which is a subset of V ′) back to V and get a set of
density Ωδ,p(1), in V , with the required dimension.

2.2. LCC with repetitions

The argument for the case of repetitions follows the same
lines, albeit the definition of a normal form LCC is more
elaborate and the proof that a normal-form sub-code exists
is considerably more involved.

Normal Form.: Given a LCC V , associate with any
v ∈ V the number m(v) representing its multiplicity in V .
The first step of the argument shows that given a (2, δ)-
LCC V , we can generate another (2, δ′)-LCC V ′ of size
n′ = |V ′| = Ωδ,p(n) such that:

1) δ′ = poly(δ/p).
2) For every v ∈ V ′, there exist δ′n′/2 disjoint pairs
{vi, vj} such that v can be recovered from each of
the pairs.

3) If vk can be recovered from vi and vj , then vi + vj +
vk = 0.

4) For any two vi, vj ∈ V ′, m(vi) = m(vj).
We say that such V ′ is in normal form. In fact, what we
actually do is (roughly) prove that V contains a large subset
that is a LCC in normal form. This is done in Lemma 4.3,
which is the main technical difficulty of the proof. Indeed
the lemma shows how to reduce the case of LCCs with
multiplicities to the no-multiplicity case.

Obtaining a (not too small) sublist of low dimension:
We now focus on V ′, the LCC in normal form, that we
obtained in the previous step. If we group multiples of the
same vector in V ′ into clusters, then all the clusters are of the
same size. This means that we can extract a set A of distinct
elements, one vector from each cluster, such that A itself
is an LCC. Now, we apply the Balog-Szemerédi-Gowers
lemma and the Ruzsa theorem, as described in Section
2.1, to obtain a relatively large subset A′ of dimension
logp n + Op,δ(1). Finally, we lift A′ into a sublist V ′′ of

V ′ by putting back in all the copies of vectors in A′. The
lifting obviously does not change the dimension, and also
because each vector has the same multiplicity, the density
of A′ in A and the density of V ′′ in V ′ are the same. This
step is formally done in the Lemma 4.4, whose proof is in
Section 5.

Amplification: Obtaining a (relatively large) sublist of
low dimension.: This step is similar to the amplification step
in the case of no repetitions, although it requires a slightly
more careful analysis. This is given in Lemmas 4.5 and 4.6,
proved in Sections 6 and 7, respectively. The end of the
argument is similar to the no multiplicity case.

3. PRELIMINARIES

3.1. Notation

Let V = (v1, . . . , vn) ∈ (Fdp)n be a list of n not
necessarily distinct elements in Fdp. For a subset S ⊆ [n],
we denote by VS ∈ (Fdp)|S| the sub-list of V containing all
vi’s with i ∈ S. For a set S ⊆ [n], we let spanV (S) ⊆ [n]
be defined as

spanV (S) = {i ∈ [n] | vi ∈ span(VS)}.

If S = {i} is a singleton set, then we let spanV (i) =
spanV ({i}). We refer to a subset M ⊆ A × A of some
product set as a matching if for every (i, j) 6= (i′, j′) ∈ M
it holds that |{i, i′, j, j′}| = 4. For two vectors v, u ∈ Fdp,
we denote by span(v, u) = {av + bu | a, b ∈ Fp} and
span∗(v, u) = {av + bu | a, b ∈ F∗p}. We will often use the
simple fact that if w ∈ span∗(v, u), then u ∈ span∗(v, w).
For a list of elements ` = (a1, . . . , an) ∈ An and an element
b ∈ A, we denote by m`(b) the number of times b appears
in ` (i.e., the multiplicity of b in `).

3.2. Additive Combinatorics

For a set A in a commutative group we denote A−A =
{a1−a2 | a1, a2 ∈ A}. We will need a slight generalization
of a result known as the Balog-Szemerédi-Gowers Lemma.

Theorem 3.1 ([2], [10]). Let ε > 0 and let A,B ⊆ Fdp.
Suppose that there are ε|A|2 pairs of elements (a, b) ∈ A2

such that a+b ∈ B. Then there exists a subset A′ ⊆ A with
|A′| ≥ (ε/2)|A| and such that |A′−A′| ≤ (4/ε)8|B|4/|A|3.

Since the above statement is slightly different from the
one appearing in the literature, we reprove Theorem 3.1 in
the full version of this paper [6].

Another result from additive combinatorics that we will
use is the following theorem of Ruzsa.

Theorem 3.2 ([13]). Let A ⊆ Fdp be such that |A − A| ≤
K|A|. Then, there exists a subspace W of Zdp containing A
such that |W | ≤ K2 · pK4 |A|. In particular, we get that

dim(W) = logp |W | ≤ 2K4 + logp |A|.

3.3. A useful lemma

The following simple lemma will be used several times
in the proofs to follow.

Lemma 3.3. Let V = (v1, . . . , vn) ⊆ (Fdp)n be a (2, δ)-LCC
such that for all vi ∈ V , |spanV (i)| < γn. Then there exist
n matchings M1, . . . ,Mn ⊆ [n]2, with |Mk| ≥ (δ− 2γ)n/2
for all k ∈ [n], such that for every k ∈ [n] and for every
edge (i, j) ∈ Mk, vk ∈ span∗(vi, vj) and vk 6∈ span∗(vi) ∪
span∗(vj).

Proof: To see why these matchings exist, consider the
following simple process of constructing them: For each k ∈
[n], add to M ′k an edge (i, j) such that vk ∈ span(vi, vj).
By the LCC property, as long as |M ′k| ≤ (δ/2)n, there will
be another edge that we can add that does not touch any of
the edges that we already added. Note that at most γn of
the pairs in M ′k can contain a multiple of vk as an element.
Let Mk ⊆ M ′k consist of all pairs not involving a constant
multiple of vk. It is clear that Mk has the required properties.

4. PROOF OF THEOREM 1

In this section, we give the proof of Theorem 1. We first
state some lemmas that will be essential for the proof. For
the sake of readability, we postpone the proofs of most
lemmas to later sections. For the rest of this section, let
V = (v1, . . . , vn) ∈ (Fdp)n denote a (2, δ)-LCC and ε > 0
be a sufficiently small constant.

The heart of the proof of Theorem 1, as described in
Section 2.2, is the next lemma that guarantees that we can
find a subset of V which is not too small and that has a low
dimension.

Lemma 4.1 (Small Subset Lemma). There exist constants
c3, c4 > 0 such that the following holds. Let V =
(v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC. Then there exists
S ⊆ [n] with |S| ≥ µ(δ, p) · n such that

dim(VS) ≤ 1/µ(δ, p) + logp(n),

where µ(δ, p) = (c3(p/δ)c4)
−1
.

Proof: The proof is composed of two parts. First, we
show that in any LCC, we can find a smaller code that has
a “nicer” structure that we call a normal form.

Definition 4.2 (Normal-form LCC). Let U =
(u1, . . . , un) ∈ (Fdp)n. We say that U is a normal-
form (2, δ)-LCC if there is a simple graph G with vertex
set [n] and with each edge labeled by some integer in [n]
such that the following conditions hold.

1) For each k ∈ [n], the edges labeled k contain a
matching consisting of δn edges.

2) For an edge (i, j) with label k, it holds that ui+uj +
uk = 0.

3) For every pair of vertices i, j ∈ [n], we have
mU (ui) = mU (uj). In other words, all vertices in
U have the same multiplicities.

It might not be very obvious from the definition, but one
of the main advantages of a normal from LCC stems from
the fact that the graph G is simple. This corresponds to
saying that each pair of coordinates is used in the decoding
of only a single coordinate of the LCC. This property is
easy to ensure if there are no repetitions, but is very hard
to obtain otherwise, since many copies of the same vector
might all ‘want’ to use the same edge to decode themselves,
and we must decide what copy will use what edge.

The following argument shows that if no vector appears
with too high a multiplicity, then we can find a subcode
which is in normal form. Assume without loss of generality
that for any i, j ∈ [n], if vi and vj are linearly dependent,
then in fact vi = vj . (Indeed this is easy to achieve by
rescaling each vector, if necessary) Now, we “blow up” the
code to contain all constant multiples of each coordinate.
For each vi ∈ V , let

L(vi) = (vi, 2vi, . . . , (p− 1)vi)

be the list of length p− 1 containing all constant multiples
of vi (except the zero one). Let V ′ denote the concatenation
of all the lists L(vi), where i ∈ [n]. In particular, V ′ is a
list, of size n′ = |V ′| = n(p − 1), of vectors in Fdp, and
for any i ∈ [n] and c ∈ F∗p, mV (vi) = mV ′(cvi). Let us
denote V ′ = (v′1, . . . , v

′
n′). The next lemma, shows that V ′

contains a sub-list which is an LCC in normal form. This is
the main technical step of the proof. Due to its length, the
proof of this lemma is omitted and can be found in the full
version of the paper [6].

Lemma 4.3 (Subcode in Normal Form). Let V =
(v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC, and let V ′ be defined
as above. If no vector v ∈ V satisfies mV (v) ≥ δ2n/16, then
there exists a set T ⊆ [n′] with |T | = t ≥ α · n′ such that
V ′T is a normal-form (2, α)-LCC, where α = (δ/100p)6.

The next lemma shows that if V is in normal form, then
we can find a not too small subcode in it that has low
dimension.

Lemma 4.4 (Small Subset Lemma for Normal Form Codes).
There exist constants c5, c6 > 0 such that the following
holds. Let U = (u1, . . . , ut) ∈ (Fdp)t be a (2, α)-LCC
in normal form. Then there exists a set S ⊆ [t] with
|S| ≥ µ̃(α, p) · t such that

dim(US) ≤ 1/µ̃(α, p) + logp(t),

with µ̃(α, p) = (c5(p/α)c6)
−1
.

We defer the proof of Lemma 4.4 to Section 5 and
continue with the proof of Lemma 4.1.

Consider two cases. If there is vi ∈ V such that
mV (vi) ≥ δ2n/16, then we define S = spanV (i). Clearly,
|S| ≥ δ2n/16 and dim(S) = 1. Thus, S is the required set.
On the other hand, if for all vi ∈ V , mV (vi) < δ2n/16,
then Lemma 4.3 guarantees that there is T ⊆ [n′] with
|T | = t ≥ α ·n′ = α(p−1)n, such that V ′T is a normal-form
(2, α)-LCC, where α = (δ/100p)6. By Lemma 4.4 we get
that there exists a set S′ ⊆ [t] with |S′| ≥ µ̃(α, p) · t ≥
µ̃(α, p)α(p− 1)n of dimension

dim(VS′) ≤ 1/µ̃(α, p) + logp(t) ≤ 1/µ(δ, p) + logp(n),

where µ(δ, p) = (c3(p/δ)c4)
−1, for some constants c3, c4 >

0. We now let S ⊂ [n] be the set of indices of all vectors vi
that are a constant multiple of an element (whose index is)
in S′. It follows that S has the required properties since its
size can drop by a factor of p and its dimension stays the
same.

Our next step is obtaining a subset of V of size roughly δn
that has dimension Op,δ(1) + logp(n). This “amplification”
is guaranteed by the next lemma, whose proof applies
Lemma 4.1 iteratively.

Lemma 4.5 (Large Subset Lemma). Let ε > 0 be a small
enough constant. There exist constants c7, c8 > 0 such that
the following holds. Let V = (v1, . . . , vn) ∈ (Fdp)n be a
(2, δ)-LCC. Then, there exists a set S ⊆ [n] with |S| ≥
(δ − εδ1.5)n such that

dim(VS) ≤ η(ε, δ, p) + logp(n),

where η(ε, δ, p) = (εδ3µ(δ/3, p)/33)−1 = c7(p/εδ)c8 .

The final lemma that we state before giving the proof of
Theorem 1 shows that once we have found a subset S ⊆
[n] such that spanV (S) = S, then we can add to S some
Ω(δn) new (indices of) vectors from V while increasing its
dimension by only O(1) + logp(n). In this fashion, we will
be able to “grow” S until it equals all of [n].

Lemma 4.6. Let ε > 0 be a small enough constant. Suppose
S ⊆ [n] is such that spanV (S) = S and S 6= [n]. Then there
is a set S ⊆ S′ ⊆ [n] with spanV (S′) = S′ such that

1) Either S′ = [n] or |S′| ≥ |S|+ (δ/(2 + ε))n.
2) dim(VS′) ≤ dim(VS) + η(ε/10, δ/3, p) + logp(n),

where η(ε, δ, p) is defined in Lemma 4.5.

We again postpone the proofs of both Lemmas 4.5 and
4.6 (to Sections 6 and 7, respectively) and instead give the
proof of Theorem 1.

Proof of Theorem 1: Let V = (v1, . . . , vn) ∈ (Fdp)n
be a (2, δ)-LCC. We now apply Lemma 4.6 iteratively. Start
with S1 = ∅ and apply Lemma 4.6 repeatedly to obtain sets
S2, S3, . . . , such that for all i,

|Si| ≥ |Si−1|+ (δ/(2 + ε))n

and

dim(Si) ≤ dim(Si−1) + η(ε/10, δ/3, p) + logp(n).

Since the size of Si cannot grow beyond n, the process will
terminate after at most m = b(2 + ε)/δc steps, yielding
Sm = [n]. We then get that

dim(VSm) = dim(V) ≤ ((2 + ε)/δ)η(ε/10, δ/3, p))

+ ((2 + ε)/δ) · logp(n),

as required. This completes the proof of Theorem 1.

5. PROOF OF LEMMA 4.4

Let U = (u1, . . . , ut) be a (2, α)-LCC in normal form.
Let G be the labeled graph on vertex set [t] satisfying
the requirements of the definition of normal-form LCC
(Definition 4.2). Notice that G has at least αt2 edges since
there are at least αt edges for each label in [t] and each edge
has a unique label. Recall also that the graph G is simple (i.e.
does not have repeated edges nor self loops). Also, for any
two vertices i, j in G, we have that mU (ui) = mU (uj) = m
(say).

We can thus partition the vertices of G into K = t/m
disjoint sets C1, . . . , CK such that each Ci contains all
vertices in G with the same associated vector.

Let G′ be the graph obtained from G by contracting each
of the sets C1, . . . , CK to a single vertex and erasing parallel
edges and self loops.

Claim 5.1. G′ has t/m vertices and at least γ · (t/m)2

edges, where γ = α/4.

Proof: Since G is simple, the number of edges between
any two sets Ci and Ci′ (including edges inside each set)
can be bounded by

(|Ci|+ |Ci′ |)2 = 4m2.

Therefore, the number of edges in H ′ can decrease by
at most this factor. Since the original number of edges
before the contraction was at least αt2, the number of edges
remaining is at least

αt2

4m2
= γ · (t/m)2.

The calculation of the number of vertices in G′ follows from
the facts that each |Ci| has size m and that the total number
of vertices before the contraction is at most t.

We would now like to use Theorem 3.1 (Balog-
Szemerédi-Gowers theorem). Since the sets Ci before the
contraction consisted of repetitions of the same vector in
U , each vertex in G′ has a distinct vector in Fdp associated
with it. Let A ⊆ Fdp denote the set of distinct elements
{−ui | i ∈ [t]} and B ⊆ Fdp the set of distinct elements
{ui | i ∈ [t]}. Clearly, |A| = |B| = t/m by Claim 5.1.
Notice that the labeling of G induces a labeling of G′ since,
if two edges in G have their endpoints in the same two sets
Ci and Ci′ then they necessarily have labels corresponding
to (repetitions of) the same vector in U (this follows from
Item 2 in Definition 4.2). Thus, each edge (i1, i2) of G′

labeled by i3 produces a pair of elements (−ui1 ,−ui2) ∈ A
such that (−ui1)+(−ui2) = ui3 ∈ B. Since there are at least
γ(t/m)2 distinct edges, there are γ(t/m)2 ≥ γ · |A|2 many
such distinct pairs in A2. We can now apply Theorem 3.1
to find a subset A′ ⊆ A of size |A′| ≥ (γ/2)|A| such that

|A′ −A′| ≤ (4/γ)8|B|4/|A|3. (1)

Using |A| = |B| and |A| ≤ (2/γ)|A′|:

|A′ −A′| ≤ (4/γ)9|A′|.

We now apply Ruzsa’s Theorem (Theorem 3.2) and conclude
that A′ is contained in a subspace W ⊆ Fdp of dimension at
most

dim(W) ≤ poly(1/γ) + logp |A′| ≤ poly(1/γ) + logp(t).

Our final step is to ‘lift’ the set A′ into a subset S ⊆ [t]
that will satisfy the conditions of Lemma 4.4. Let S ⊆ [t]
be the subset consisting of indices of vectors in U that are
equal to a vector in A′. Since in the contraction step (going
from G to G′), each vector was of multiplicity m, we get
that

|S| = |A′| ·m ≥ (γm/2) · |A| = γt/2.

It is also clear that the dimension of US is the same as that
of A′. This completes the proof of Lemma 4.4.

6. PROOF OF LEMMA 4.5

Let V = (v1, . . . , vn) be a (2, δ)-LCC as in the statement
of the lemma. The proof will use Lemma 4.1 as a black
box, iteratively. To facilitate the iteration process we start
by proving the following claim.

Claim 6.1. Let ε > 0 be sufficiently small and δ′ > (δ −
εδ1.5)/2. Let S ⊆ [n] be some (possibly empty) set and
denote Sc = [n] \ S. Suppose that for every k ∈ Sc there
exists a matching Mk ⊆ Sc × Sc of size δ′n such that for
every (i, j) ∈ Mk, vk ∈ span∗(vi, vj). Then, there exists a
set T ⊆ Sc and δ′′ > 0 such that

1) |T | ≥ (δ − εδ1.5)µ(δ′, p)n, where µ(δ, p) is given by
Lemma 4.1.

2) dim(VT) ≤ (εδ3µ(δ′, p)/33)−1 + logp(n).
3) δ′′ ≥ δ′ − (εδ3/32)µ(δ′, p).
4) For every k ∈ Sc \ T there exists a matching

Nk ⊆ (Sc \ T) × (Sc \ T) of size δ′′n such that
for every (i, j) ∈ Nk, vk ∈ span∗(vi, vj). The set
Sc \ T might be empty (in which case this condition
is trivially satisfied).

Roughly, the claim says that if after removing a set S
from the LCC the remaining vectors in Sc also form a
(possibly slightly weaker) LCC then we can continue and
‘peel’ a (relatively large) subset T of Sc that has a low
dimension such that Sc \ T is also a LCC with roughly the
same parameters as Sc.

Proof of Claim 6.1: Let U = VSc and denote the size
of the list U by n1 = |Sc|. Observe that since Sc contains
matchings of size δ′n and δ′ > (δ − εδ1.5)/2 we get that

n1 ≥ 2δ′n > (δ − εδ1.5)n. (2)

From the condition on the matchings Mk it follows that
U is a (2, δ′)-LCC. Lemma 4.1 implies that there exists a
set T ′ ⊆ Sc such that

|T ′| ≥ µ(δ′, p)n1 > (δ − εδ1.5)µ(δ′, p)n

and

dim(UT ′) = dim(VT ′) ≤ µ(δ′, p)−1 + logp(n).

Without loss of generality, we can assume that

spanU (T ′) = T ′

(otherwise replace T ′ with spanU (T ′)). We will now add a
small number of elements to T ′ to get the set T required by
the claim.

Let R = Sc \ T ′. Suppose that there exists some k ∈ R
such that Condition 4 of the claim does not hold (for δ′′ as in
Condition 3 of the claim). This means that, in the matching
Mk, there are at least

m ≥ (εδ3/32)µ(δ′, p)n

pairs, call them

(i1, j1), . . . , (im, jm) ∈ U × U

such that each pair contains at least one element of T ′, say it
is always the first coordinate. Since k 6∈ spanU (T ′) we know
that no pair can have both its elements in T ′ (if this happens
then vk is spanned by elements in VT ′) and so j1, . . . , jm are
not in T ′. Therefore, by replacing T ′ with spanU (T ′ ∪{k})
we increase the size (of T ′) by at least m, since we are
adding all the elements j1, . . . , jm that were not in T ′ before
(here we use the fact that if vk ∈ span∗(vi, vj) then vj ∈
span∗(vi, vk)). This step can increase the dimension by at
most one. We can repeat this process at most

bn/mc ≤
⌊
((εδ3/32)µ(δ′, p))−1

⌋
times (since the size of T ′ cannot exceed n) and so after we
are done we have a set T that satisfies Conditions 4 and 3 of
the claim. Since we only added elements to T ′, Condition 1
is also satisfied. Condition 2 follows from the fact that at
each step we increase the dimension by one and so

dim(VT) ≤ dim(VT ′) + bn/mc
≤ (εδ3µ(δ′, p)/32)−1 + µ(δ′, p)−1 + logp(n)

≤ (εδ3µ(δ′, p)/33)−1 + logp(n),

where the last inequality holds for a small enough ε.
We now continue with the proof of Lemma 4.5. As before

we assume that any two vectors in V are either equal or

linearly independent. Set S0 = ∅. As long as there is
k ∈ [n] with |spanV (k)| = mV (k) ≥ εδ2n/16, add k to S0.
Clearly this process terminates after at most 16/εδ2 steps
resulting in a set S0 of dimension at most 16/εδ2. Assume
without loss of generality that S0 = spanV (S0) (otherwise
we can simply increase S0). Clearly, each k ∈ [n] \ S0

has |spanV (k)| < εδ2n/16. Using the same argument as in
Lemma 3.3, we conclude that there are n0 , n−|S0| match-
ings M1

1 , . . . ,M
1
n0
⊆ [n]2 such that |M1

k | ≥ (δ−εδ2/8)n/2
for all k ∈ [n] \ S0, and every pair (i, j) ∈ M1

k is so that
vk ∈ span∗(vi, vj). Now, if there is k ∈ [n] \ S0 such that
at least εδ2n/16 of the edges in M1

k involve an element of
S0, then we add k to S0 and again, take the span of the
set. As in the proof of Claim 6.1, the span will contain at
least εδ2n/16 new elements. We repeat this process until we
cannot continue anymore. Since the size increases at every
step by at least εδ2n/16, whereas the dimension increases by
only 1, the final set, which we denote by S1, has dimension
at most 32/εδ2. If |S1| ≥ (δ − εδ1.5)n, then we let S = S1

and we are done. So assume that |S1| < (δ − εδ1.5)n. At
this point, each element k ∈ [n]\S1 has multiplicity smaller
than εδ2n/16 and at least (δ − εδ2/4)n/2 edges in M1

k do
not involve any element of S1.

We would like to apply Claim 6.1 with S1 being the set
S of the claim. Before doing so we set

δ1 = (δ − εδ2/4)/2,

and note that for each k ∈ Sc1, at least (δ−εδ2/4)n/2 = δ1n
of the edges in M1

k do not involve any element of S1. We
can now apply Claim 6.1 with δ′ = δ1 = (δ − εδ2/4)/2 >
(δ − εδ1.5)/2 to find a subset T1 ⊆ Sc1 which satisfies the
conditions of the claim. In particular

|T1| ≥ (δ − εδ1.5)µ(δ1, p)n ≥ (δ − εδ1.5)µ(δ/4, p)n

and

dim(VT1
) ≤ (εδ3µ(δ1, p)/33)−1 + logp(n)

≤ (εδ3µ(δ/4, p)/33)−1 + logp(n).

We also get, for every k ∈ Sc1 \T1, a new matching M2
k that

satisfies Condition 4 of Claim 6.1 and whose size is

|M2
k | ≥ δ′′n

≥ (δ1 − (εδ3/32)µ(δ1, p))n

≥ ((δ − εδ2/4)/2− (εδ3/32)µ(δ, p))n

> (δ − εδ1.5)n/2.

Set δ2 = δ′′ > (δ − εδ1.5)/2. Let S2 = S1 ∪ T1. We can
now apply Claim 6.1 with S = S2. This process will result
in a sequence of disjoint sets T1, T2, . . . and corresponding
matchings {M1

k}, {M2
k}, . . . of sizes δ1n, δ2n, . . . where

δi+1 ≥ δi − (εδ3/32)µ(δi, p) ≥ δi − (εδ3/32)µ(δ, p). We
will also have the related sequence of sets

S1, S2, . . . , Si = Si−1 ∪ Ti−1.

We will stop at step ` if we get δ` ≤ (δ− εδ1.5)/2 or if we
run out of elements of [n] (that is, if S` = [n]).

Suppose this process stops after ` iterations. Since we
have found ` disjoint sets T1, . . . , T`, each of size at least
(δ − εδ1.5)µ(δ/4, p)n it holds that

` ≤
⌊(

(δ − εδ1.5)µ(δ/4, p)
)−1
⌋
.

We can use the bound on ` to obtain

δ` ≥ δ1 − (`− 1) · (εδ3/32)µ(δ/4, p)

> (δ − εδ2/4)/2

−
(
(δ − εδ1.5)µ(δ/4, p)

)−1 · (εδ3/32)µ(δ/4, p)

> (δ − εδ1.5)/2

and so the process will terminate only after we covered all
of [n]. Notice that, as the process did not terminate at the
(`− 1)’th step, it must be the case that

|S`−1| ≤ (1− (δ − εδ1.5))n

since, otherwise, the set [n]\S`−1 would not be big enough
to contain the matchings {M `−1

k } which have at least
δ`−1n > (δ − εδ1.5)n/2 edges each. This implies that

|T`−1| = |S`| − |S`−1| ≥ (δ − εδ1.5)n.

The proof of Lemma 4.5 is now complete since, by Condi-
tion 2 of Claim 6.1, we have

dim(VT`−1
) ≤ (εδ3µ(δ`−1, p)/33)−1

+ logp(n) ≤ (εδ3µ(δ/4, p)/33)−1

+ logp(n).

7. PROOF OF LEMMA 4.6

The proof of this lemma is similar to Proposition 7.11 in
[3].

Let Sc = [n] \ S. As in the proof of Lemma 4.5, we first
add to S all elements k ∈ Sc with |spanV (k)| ≥ εδ2n/20
and denote by S1 the span of the resulting set. This process
can add at most 20/εδ2 linearly independent elements to
S and so dim(S1) ≤ dim(S) + 20/εδ2. We again follow
the argument of Lemma 3.3 and conclude that for every
k ∈ [n]\S1, there is a matching Mk ⊆ [n]2, of size |Mk| ≥
(δ − εδ2/10)n/2, such that for each (i, j) ∈ Mk we have
vk ∈ span∗(vi, vj). We now repeat the following: We add to
S1 any k such that Mk contains at least εδ2n/20 edges with
at least one endpoint in S1 and take the span (inside V) of
this set. It is clear that whenever we add such an element to
S1 its size grows by εδ2n/20 and its dimension grows by
1. Thus, this process ends after at most 20/εδ2 steps. Call
the resulting set S2. If S2 = [n], then we set S′ = S2 and
complete the proof. Otherwise, since S2 6= [n], there must
be k ∈ Sc2. As Mk has (δ − εδ2/5)n/2 edges in Sc2 × Sc2
(as otherwise we would have added v to S2), it must be the
case that |Sc2| ≥ (δ − εδ2/5)n.

Denote n2 = |Sc2|. From the argument above, it follows
that there are n2 matchings {M ′k}k∈Sc2 , with Mk ⊆ (Sc2)2,
such that for all k ∈ Sc2, |Mk| ≥ (δ − εδ2/5)n/2 and for
each (i, j) ∈ Mk we have vk ∈ span∗(vi, vj). This implies
that

V ′ = VSc

is a (2, δ′)-LCC with

δ′ = (1/2)(δ − εδ2/5)(n/n2).

Indeed, we get such δ′ since for every k ∈ Sc2, |Mk| ≥
(δ − εδ2/5)n/2 ≥ δ′n2. Lemma 4.5 now implies that there
is a subset Ŝ ∈ Sc such that

|Ŝ| ≥ (δ′ − εδ′1.5/10)n2

≥ (1− ε/10)δ′n2

≥ (1− ε/3)δn/2

≥ δn/(2 + ε)

and

dim(VŜ) ≤ η(ε/10, δ′, p) + logp(n)

≤ η(ε/10, δ/3, p) + logp(n).

Letting
S′ = spanV (S ∪ Ŝ)

completes the proof of Lemma 4.6.

8. ACKNOWLEDGEMENT

A.B. research conducted as a graduate student at MIT and
partially supported by NSF Awards 0514771, 0728645, and
0732334.

Z.D. research partially supported by NSF grant CCF-
0832797 and by the Packard fellowship.

S.S. research partially supported by the Microsoft Re-
search Ph.D. Fellowship.

Part of A.S. research was done while visiting MSR NE.
A.S. research was partially supported by the Israel Science
Foundation (grant number 339/10).

REFERENCES

[1] N. Alon, “Perturbed identity matrices have high rank: Proof
and applications,” Combin. Probab. Comput., vol. 18, no. 1-2,
pp. 3–15, 2009.

[2] A. Balog and E. Szemerédi, “A statistical theorem of set
addition,” Combinatorica, vol. 14, pp. 263–268, 1994.

[3] B. Barak, Z. Dvir, A. Wigderson, and A. Yehudayoff, “Rank
bounds for design matrices with applications to combinatorial
geometry and locally correctable codes,” in Proc. 43rd Annual
ACM Symposium on the Theory of Computing (to appear),
2011.

[4] O. Barkol, Y. Ishai, and E. Weinreb, “On locally
decodable codes, self-correctable codes, and t-private
PIR,” Algorithmica, vol. 58, pp. 831–859, 2010. [Online].
Available: http://dx.doi.org/10.1007/s00453-008-9272-1

[5] J. Beck, “On the lattice property of the plane and some
problems of Dirac, Motzkin and Erdős in combinatorial
geometry,” Combinatorica, vol. 3, pp. 281–297, 1983.

[6] A. Bhattacharyya, Z. Dvir, S. Saraf, and A. Shpilka, “Tight
lower bounds for 2-query LCCs over finite fields,” 2011,
ECCC Technical-Report TR11-054. [Online]. Available:
http://eccc.hpi-web.de/report/2011/054/

[7] Z. Dvir, “On matrix rigidity and locally self-correctable
codes,” in Proc. 25th Annual IEEE Conference on Compu-
tational Complexity, 2010, pp. 291–298.

[8] Z. Dvir and A. Shpilka, “Locally decodable codes with two
queries and polynomial identity testing for depth 3 circuits,”
SIAM J. Comput., vol. 36, no. 5, pp. 1404–1434, 2007.

[9] O. Goldreich, H. J. Karloff, L. J. Schulman, and L. Trevisan,
“Lower bounds for linear locally decodable codes and private
information retrieval,” Comput. Complexity, vol. 15, no. 3, pp.
263–296, 2006.

[10] T. Gowers, “A new proof of Szemerédi’s theorem for arith-
metic progressions of length four,” Geom. Funct. Anal., vol. 8,
pp. 529–551, 1998.

[11] N. Kayal and S. Saraf, “Blackbox polynomial identity testing
for depth 3 circuits,” in Proceedings of the 50th Annual
FOCS, 2009, pp. 198–207.

[12] I. Kerenidis and R. de Wolf, “Exponential lower bound for
2-query locally decodable codes via a quantum argument,” J.
Comput. System Sci., vol. 69, no. 3, pp. 395–420, 2004.

[13] I. Ruzsa, “Sums of finite sets,” in Number Theory: New York
Seminar, D. V. Chudnovsky, G. V. Chudnovsky, and M. B.
Nathanson, Eds. Springer Verlag, 1996.

[14] N. Saxena and C. Seshadhri, “From Sylvester-Gallai config-
urations to rank bounds: Improved black-box identity test for
depth-3 circuits,” in Proc. 51st Annual IEEE Symposium on
Foundations of Computer Science, 2010, pp. 21–29.

[15] C. E. Shannon, “A mathematical theory of communication,”
Bell System Technical Journal, vol. 27, pp. 379–423, 623–
656, 1948.

[16] S. Yekhanin, “Locally decodable codes,” Foundations and
Trends in Theoretical Computer Science, to appear. Pre-
liminary version at http://research.microsoft.com/en-us/um/
people/yekhanin/Papers/LDCnow.pdf.

